The Relationship Between Agnostic Selective Classification Active Learning and the Disagreement Coefficient

نویسندگان

  • Roei Gelbhart
  • Ran El-Yaniv
چکیده

A selective classifier ( f ,g) comprises a classification function f and a binary selection function g, which determines if the classifier abstains from prediction, or uses f to predict. The classifier is called pointwise-competitive if it classifies each point identically to the best classifier in hindsight (from the same class), whenever it does not abstain. The quality of such a classifier is quantified by its rejection mass, defined to be the probability mass of the points it rejects. A “fast” rejection rate is achieved if the rejection mass is bounded from above by Õ(1/m) where m is the number of labeled examples used to train the classifier (and Õ hides logarithmic factors). Pointwise-competitive selective (PCS) classifiers are intimately related to disagreement-based active learning and it is known that in the realizable case, a fast rejection rate of a known PCS algorithm (called Consistent Selective Strategy) is equivalent to an exponential speedup of the well-known CAL active algorithm. We focus on the agnostic setting, for which there is a known algorithm called LESS that learns a PCS classifier and achieves a fast rejection rate (depending on Hanneke’s disagreement coefficient) under strong assumptions. We present an improved PCS learning algorithm called ILESS for which we show a fast rate (depending on Hanneke’s disagreement coefficient) without any assumptions. Our rejection bound smoothly interpolates the realizable and agnostic settings. The main result of this paper is an equivalence between the following three entities: (i) the existence of a fast rejection rate for any PCS learning algorithm (such as ILESS); (ii) a poly-logarithmic bound for Hanneke’s disagreement coefficient; and (iii) an exponential speedup for a new disagreement-based active learner called Active-ILESS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic Active Learning

We study pool-based active learning in the presence of noise, that is, the agnostic setting. It is known that the effectiveness of agnostic active learning depends on the learning problem and the hypothesis space. Although there are many cases on which active learning is very useful, it is also easy to construct examples that no active learning algorithm can have an advantage. Previous works ha...

متن کامل

Active Learning: Disagreement Coefficient

In previous lectures we saw examples in which active learning gives an exponential improvement in the number of labels required for learning. In this lecture we describe the Disagreement Coefficient —a measure of the complexity of an active learning problem proposed by Steve Hanneke in 2007. We will derive an algorithm for the realizable case and analyze it using the disagreement coefficient. I...

متن کامل

Agnostic Selective Classification

For a learning problem whose associated excess loss class is (β,B)-Bernstein, we show that it is theoretically possible to track the same classification performance of the best (unknown) hypothesis in our class, provided that we are free to abstain from prediction in some region of our choice. The (probabilistic) volume of this rejected region of the domain is shown to be diminishing at rateO(B...

متن کامل

Active Learning via Perfect Selective Classification

We discover a strong relation between two known learning models: stream-based active learning and perfect selective classification (an extreme case of ‘classification with a reject option’). For these models, restricted to the realizable case, we show a reduction of active learning to selective classification that preserves fast rates. Applying this reduction to recent results for selective cla...

متن کامل

Beyond Disagreement-Based Agnostic Active Learning

We study agnostic active learning, where the goal is to learn a classifier in a pre-specified hypothesis class interactively with as few label queries as possible, while making no assumptions on the true function generating the labels. The main algorithms for this problem are disagreement-based active learning, which has a high label requirement, and margin-based active learning, which only app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.06536  شماره 

صفحات  -

تاریخ انتشار 2017